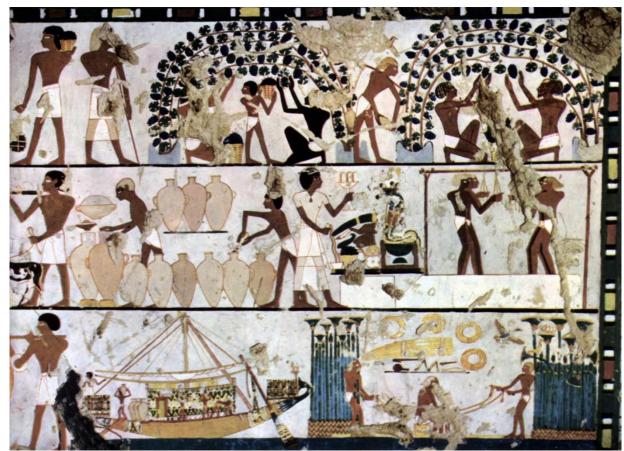


Aromatic White & Rosé Winemaking Grape to Cellar


Presenter:

Marcy Mallette – Technical Winemaking Rep California Central Coast and Southern CA 805-234-8446 Marcy.Mallette@laffort.com

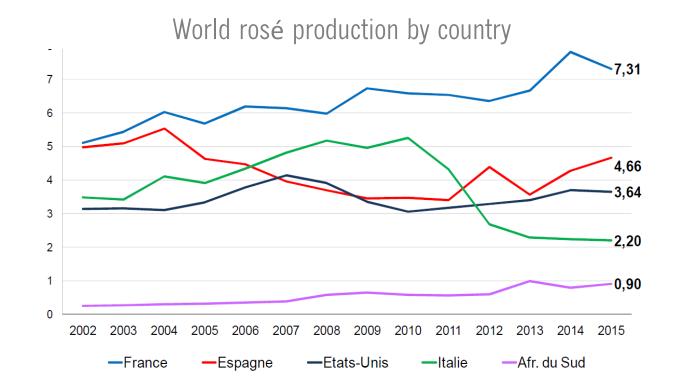
- First winemaking process in Mesopotamia
 - 3000 B.C.
- Grapes were crushed without vatting
- Rosé was hence the first wine ever made!

• Representations studies

Fresco in a funeral room, Egypt 1500 B.C.

• Representations studies

Harvest represented on a tapestry, middle age, 16th century.


- At the 13th century, Bordeaux was producing 87% of Clairet while just 13% of Vinum Rubeum.
- At the 16th century, Dutch shippers started using sulfur as a preservative during transport
- 17th century: first wine inventory in Paris showed that cellars were 80% of Clairet.
- 1682 : First mention of the « Vin Rosé » term.

- At the 17th century, workers ask for more « nourishing » wines.
- Emergence of « vins noirs » (Black wines) in Bourgogne, Gaillac, Cahors, Béarn and Spain.
- oak cask aging duration increased for these vins noir wines: « New French Claret »
- Market switch in the 20th century: rosé wines represent only 10% of the total wine consumed in France.

ÉVOLUTION DE LA PROPORTION DE VINS ROUGES ET ROSÉS ÉLABORÉS

Rosé wines, a few numbers

Source : CIVP/FranceAgriMer - Abso Conseil

France : 1st world producer with 31%

Rosé wines, a few numbers

- Worldwide production increased by 8% within the last 10 years.
 - With a regular annual growth of 1%, we will need an extra 2 to 3 millions HI (52-78 Mgal) of rosé wines each year
- Rosé wine production is close to 10% of the total worldwide wine production.

Rosé wines, a few numbers

- Rosé shows the highest rate of growth in most of countries concerning :
 - ➢Production volume
 - ≻Value
 - ≻International exchange
 - ➤Consumption

General Outline Today

- Methods for "growing" rose
- Grape Handling managing phenolic extraction (bitterness)
- Rose fruit processing skin contact time, color extraction
- White & Rose techniques for increasing aromatics
 - Juice settling & preparation
 - Fermentation techniques
 - Glutathione
 - Stabilization

Vinification

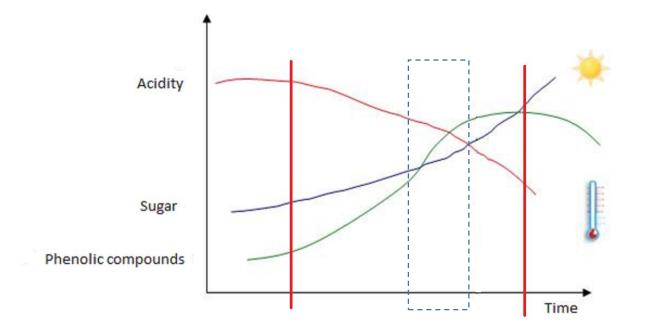
• G. Masson's definition (director of the research and experimentation center of rosé wine):

« A wine which is produced through the fermentation of a must, obtained after **the well managed prefermentative pellicular maceration** of red grapes. »

- Varieties :
 - Cinsault, Grenache, Tibouren, Mourvèdre, Carignan, Syrah, Nielluccio,...
 - Cabernet franc, Merlot, Zinfandel,...

Aromatic White & Rosé Winemaking Grape to Cellar

Grape Harvesting Stage


Aromatic White & Rosé Winemaking

Grape to Cellar

In the vineyard

Vinification

- Think rosé in the vineyard
 - VAT : 13°
 - TA : 6 g/l Tartaric Acid

Method #1 – Grow your crop for rosé Method #2 – Grow your crop for red wine and bleed off juice for rosé (saignée)

Method #3 – Grow your crop for red wine and crop thin late. Process the thinned fruit for rosé instead of throwing it on the ground.

Method #4 – Blend red and white wine – NOT RECOMMENDED

Rosé Style - America

- Any variety
- Saignée method is most common
- Not afraid of phenolics, can be balanced with RS
- Huge range of color

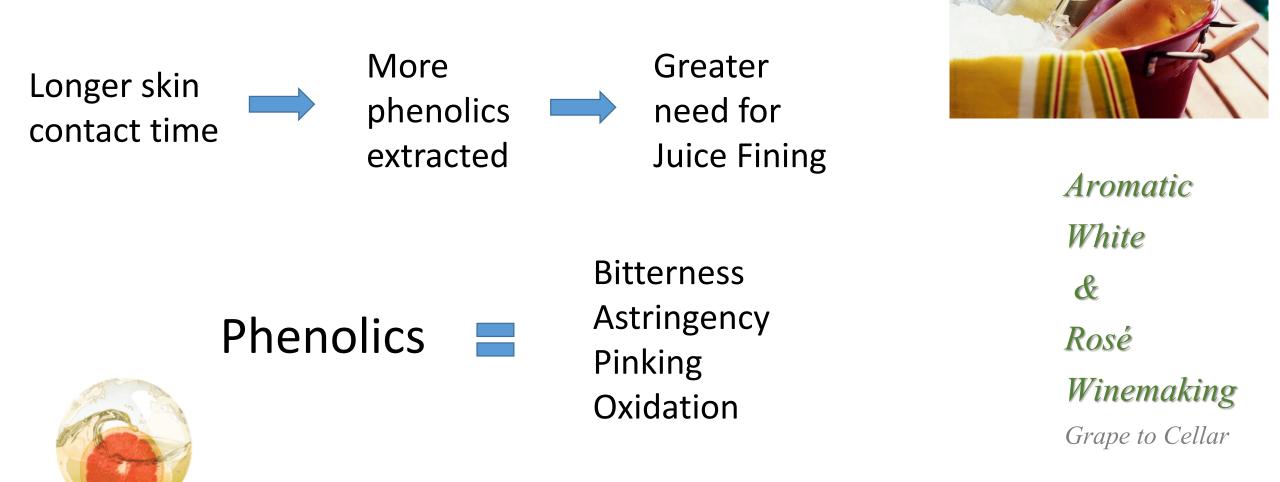
Aromatic White & Rosé Winemaking Grape to Cellar

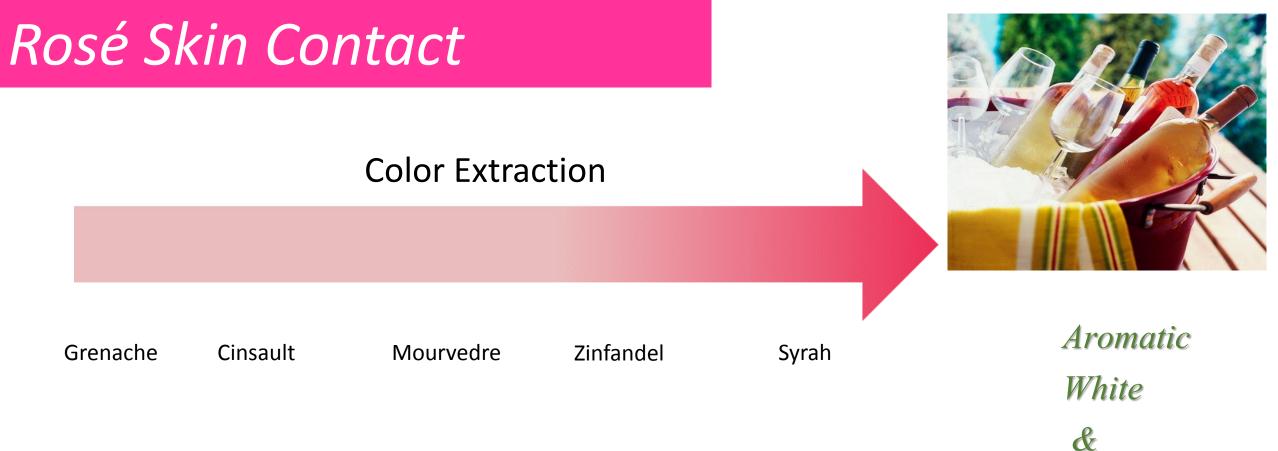
Your style will determine your harvest parameters

Aromatic Profile

Thiols

Chenin Blanc, Riesling, Sauvignon Blanc, Gewurtztraminer Grenache, Syrah, Mourvedre for rose


Aromatic White & Rosé Winemaking Grape to Cellar



Esters

Muscat, Viognier, Rousanne, Trebbiano, Pinot Grigio

Phenolic Management

Rosé

Winemaking

Grape to Cellar

- •You will lose 30% of your color from juice to post SO2 addition.
- •More time on skins = more phenolics extracted.
- •Use a fining agent at juice settling to remove bitter phenolics.

Pressing Stage

Aromatic White & Rosé Winemaking Grape to Cellar

Pressing Enzyme Treatment

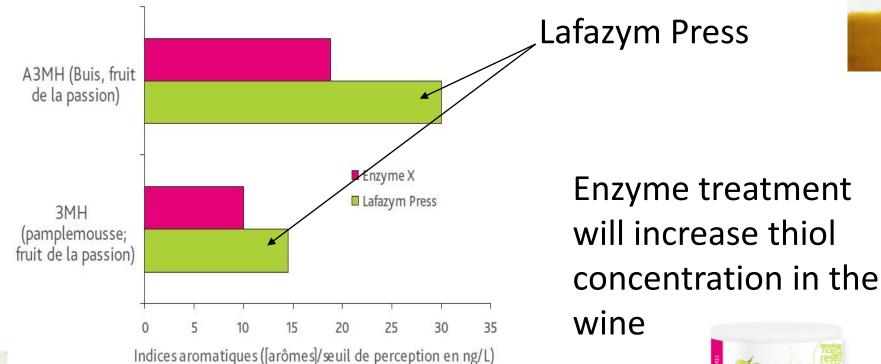
Phenolic Management

SÉMILLON 2004-pH 3,4 - VIGNOBLES DUCOURT

 Increase free run juice by 11%

LAFAZYM[®] PRESS

VIN BLANK


- Decrease pressing time to reduce
 - phenolic extraction
- Lowers juice turbidity

Pressing Enzyme Treatment

Phenolic Management

Indices aromatiques de moûts de Sauvignon Blanc

Aromatic White & Rosé Winemaking Grape to Cellar

LAFAZYM[®] PRESS

100 g

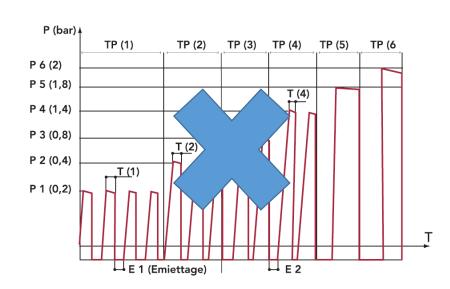
Pressing Enzyme Treatment

Phenolic Management

How to Apply Lafazym Press:

- Calculate the amount of Lafazym Press needed – average dosage is 20g per ton of fruit
- 2. Dissolve Lafazym Press in water, wait 15 minutes.
- 3. As fruit is loaded into the press, spray the liquid enzyme mixture evenly over the fruit.
- 4. Ideally, it needs about one hour of contact time for effect.

Dry Ice – 2 functions:

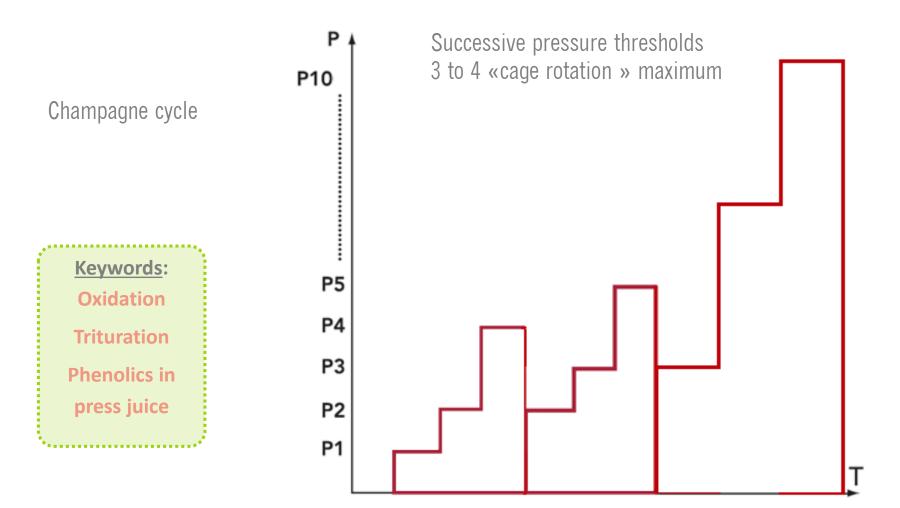

 Protect the juice from oxygen – prevents browning and aromatic precursor loss
 Cool juice temperature – will slow down enzymatic reactions, preventing excessive oxidation Crisp Refreshing White & Rosé Wines

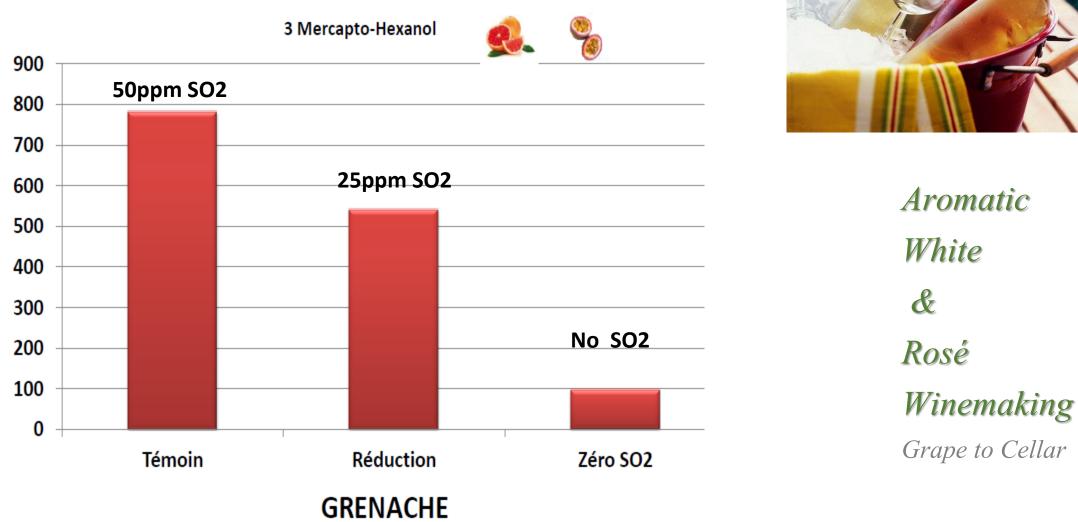
Press Cycles

Phenolic Management

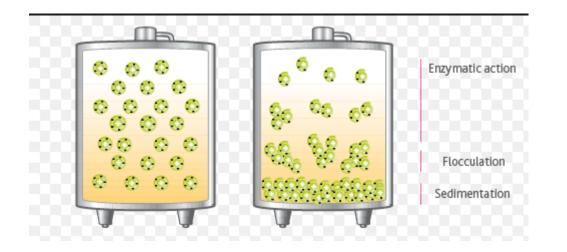
Reduce maceration, lowering extraction of phenolics from skins

Reduce deflation events


Reduce rotations


Vinification

Pressing


• Manage the pressing cycle

SO2 & Aroma Preservation

Aromatic White & Rosé Winemaking Grape to Cellar

Juice Settling Stage

Aromatic White & Rosé Winemaking

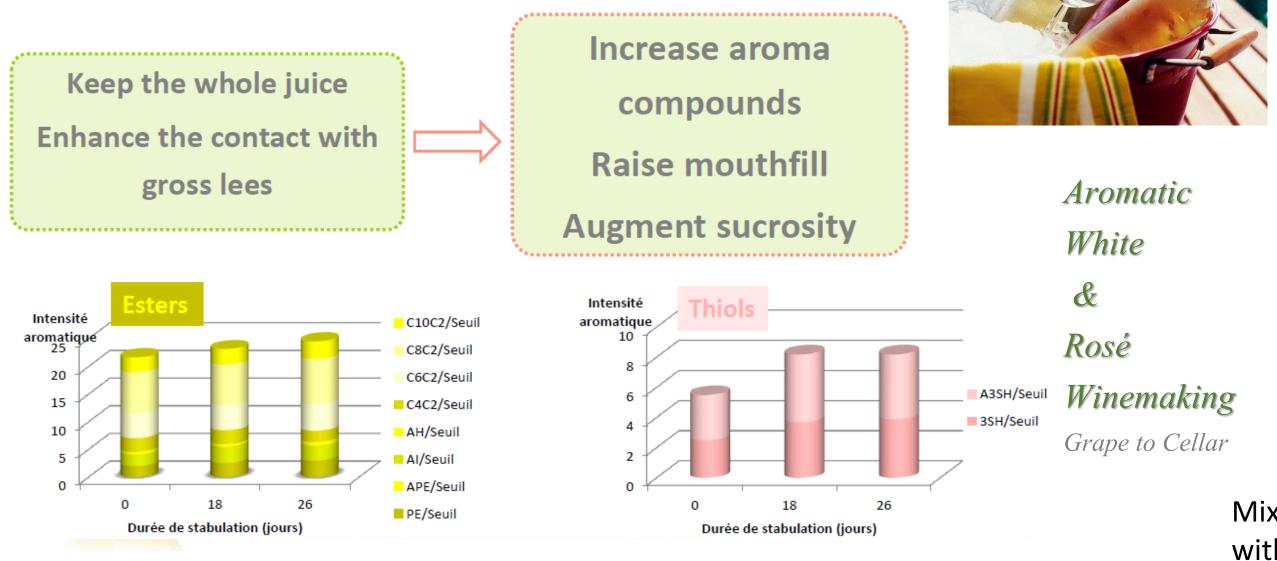
Grape to Cellar

Settling Enzyme Options

Lafazym 600 XL ICE

Highly concentrated purified liquid pectolytic enzymes preparation high in side chain activities. Fast and efficient for white and rosé juice – effective down to 40F. Dose 0.5-2mL/hL

Lafazyme CL Clarification


Clarification enzyme

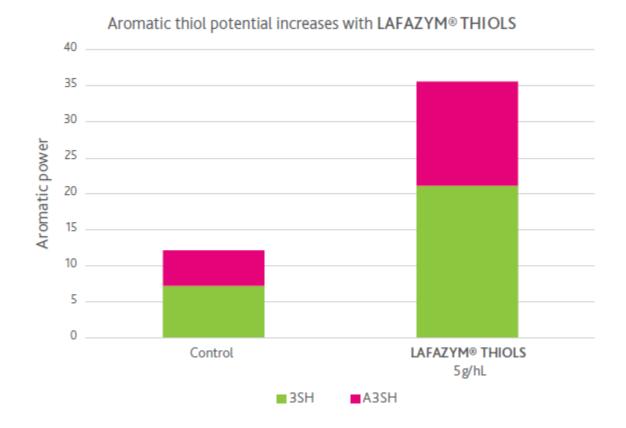
 Juice depectinization and compact settling 5-20 ppm

Winemaking Idea

• Settling lees Stabulation

Winemaking Idea

Temperature °C	Products	Stabulation time
0 - 2 °C (32°F)		1 to 3 weeks
6-8°C (45°F)	2,5g/hl Zymaflore® Egide	48 h to 5 days
10 - 12 °C (50°F)	5ml/hl Lafazym®Thiols + Egide	24 to 48 h



Stabulation Protocols:Aromatic> Steer clear of oxygenWhite> Avoid indigenous fermentation&> Cool down temperatureRosé> Add non-SaccharomycesWinemaking> Agitation: Dry ice or CO2 SpargeGrape to Cellar> Temperature rises – add enzyme Lafazym THIOLS

Lafazym THIOL

New product – reduce stabulation time

 Trial done in Argentina 2016 (Sauvignon Bl.)

- Lafazym THIOL added 5g/hL
- 192% increase in aromatic thiol potential of Sauvignon Blanc

Aromatic

White

æ

Rosé

Winemaking Grape to Cellar

Lafazym THIOL

- Enhancement tool for wines aromatic profile and intensity.
- Reduce the time needed for traditional Stabulation
- Can be used on a wide variety of white grapes: Sauvignon, Colombard, Gewurztraminer, and Riesling. On rosé juice as well; Grenache, Syrah, Merlot, Mourvedre, Cinsault

Added after pressing, before alcoholic fermentation **30 – 60ppm**

3-Mercaptohexan-1-ol (3MH) Aroma: **Grapefruit**, passion fruit, gooseberry, guava

3-mercaptohexylacetate (3MHA) Aroma: Passion fruit, grapefruit, box tree, gooseberry, guava

4-methyl-4-mercaptopentan-2-one (4MMP)

Aroma: Box tree, passion fruit, broom, black current

Juice Preparation

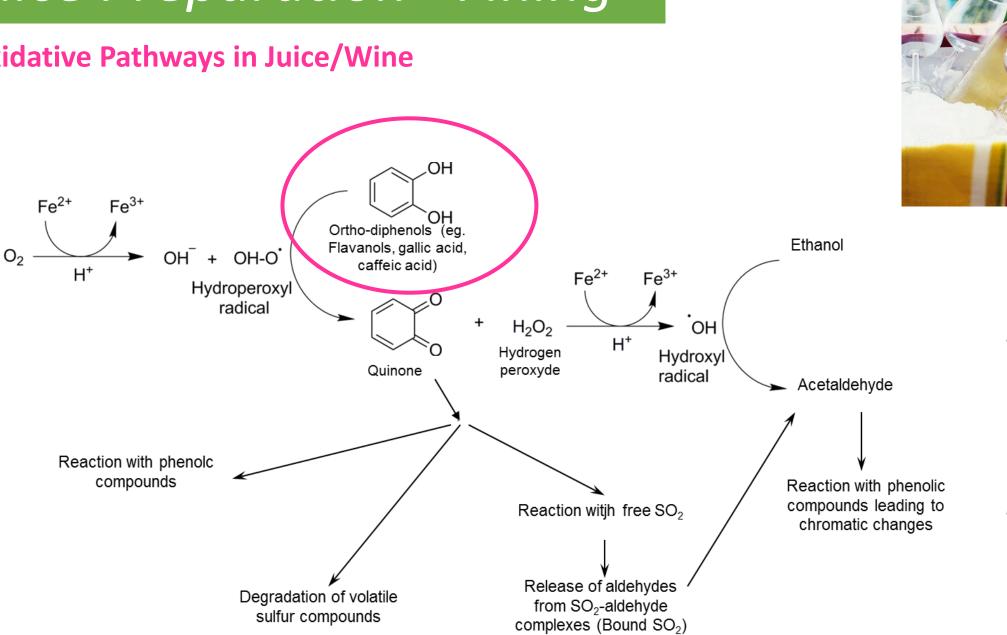
Juice Fining

Longer skin contact time More phenolics in eed for extracted Juice Fining

Phenolics Phenolics Contemporaries

Bitterness

Astringency


Pinking

Oxidation Crisp Refreshing White & Rose Wines

Correcting & Protecting – Juice Fining

Juice Preparation - Fining

Oxidative Pathways in Juice/Wine

Crisp Refreshing White Rose Wines

Juice Preparation - Fining

Aromatic White & Rosé Winemaking Grape to Cellar

Wine 1 – Without fining

Fining Juice

Verses

Fining Wine

Wine 2 – Fining with Laffort Polymust Press 300 ppm after fermentation

Wine 3 – Fining with Laffort Polylact 300 ppm on press juice

Wine 4 – Fining with Laffort **Polymust Press 300 ppm** on press juice

Juice Preparation - Fining

POLYMUST[®] ROSÉ

PVPP - Eliminates bitterness & pinking potential in wine

Potato - Eliminates oxidized and oxidizable phenolic compounds

New Product

Aromatic White & Rosé Winemaking Grape to Cellar

200-800 ppm

Juice Prep Summary

Phenolic Management

- 1) Longer time on skins = more phenolic extraction
- 2) Minimize press cycle rotations to lower phenolic extraction
- 3) Use pressing enzyme to shorten press cycles to reduce hard press fraction with higher phenolics
- 4) Use Polumust Rose to remove oxidized and bitter phenolics from juice

Aromatic White & Rosé Winemaking Grape to Cellar

Lower phenolic profile to prevent oxidation and preserve your aromatic profile

Fermentation Stage

Aromatic White & Rosé Winemaking

Grape to Cellar

Juice Preparation

Rack clean juice off lees

Protect juice from Oxygen – gas tanks with CO2 or Argon

Aromatic White & Rosé Winemaking Grape to Cellar

Target: NTU 100 – 200 1% Solids

Juice Preparation

Acid & Brix Adjustment

Balance your juice before you start fermentation

- 1) Fermentation will integrate your additions/adjustments
- 2) Yeast can be shocked by a mid fermentation acid addition

Aromatic White & Rosé Winemaking Grape to Cellar

Target TA – greater than 6g/L Tartaric Acid

Juice Preparation

Acid & Brix Adjustment

Average brix conversion to get potential alcohol

Aromatic White & Rosé Winemaking Grape to Cellar

Example: 22.5 Brix X 0.605 = 13.6% Alcohol

Online Tool

	VineAdds
_	Acid SO2 RS Copper
	Adds Reduction Molecular Solutions Bench Trials
	SO2 Addition Details
	Agent KMBS •
	Wine Volume Gals •
	Δ SO2 ppm ▼
	Calculate

Crisp Refreshing White & Rose Wines

Why adjust SO2?

Yeast Selection

#1 most important – yeast alcohol tolerance ≥ potential alcohol

- Look at nutrient needs
- Look at temperature range The fun stuff:
 - Flavor
 - Mouthfeel

Yeast Selection

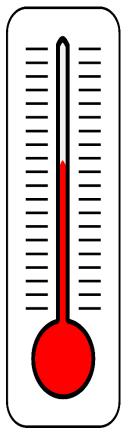
High expression of grapefruit & passion fruit. Preserves acidity, low temperature tolerance.

Zymaflore® X5

High expression of passion fruit & lychee. Produces Hsp 12, giving rich mouthfeel. Nutrient needs are high.

Zymaflore® VL3

Aromatic White & Rosé Winemaking Grape to Cellar



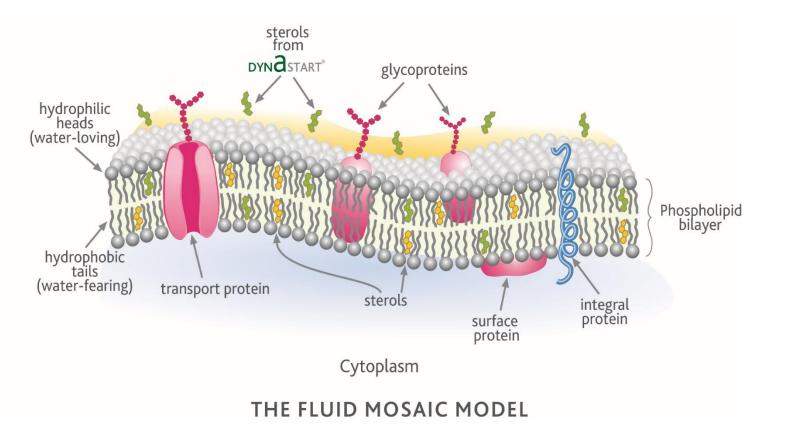
High expression of pineapple & pear. Preserves acidity. Low temp tolerance & nutrient needs.

Zymaflore® X16

Winemaking Idea

Fermentation Temperature

68°F Favors Thiol Production



55°F Favors Ester Production

Yeast Re-Hydration

Sterols – important for yeast membrane strength, keeping yeast healthy during fermentation

Aromatic

White

&

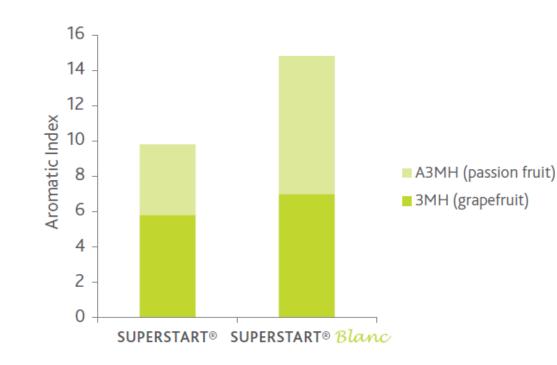
Rosé

Winemaking

Grape to Cellar

Specific Fermentation

Specialized Yeast Re-Hydration


SUPERSTART[®]BLANC

AROMA OPTIMISATION With an optimal rehydration yeast

Rich in vitamins & mineral salts

Yeast absorb into membrane as they hydrate – enhances **3 generations** of yeast!

Specific Fermentation

Specialized Yeast Re-Hydration

Superstart Blanc

- Dosage: 150-250ppm added to <u>total</u> <u>must volume</u>
- You need 20 times the weight of water for dissolving Superstart Blanc
- Measure out desired volume of water at 104°F
- Dissolve into water
- This will bring the water temp down to 100°F, perfect for the yeast

Mid Ferment Nutrition

#1 – Proper nutrition will reducethe risk of H2S production

#2 – when yeast are happy, they will produce the aromatic profile advertised

Mid Ferment Nutrition

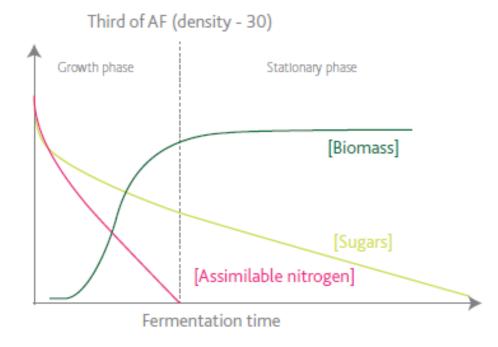
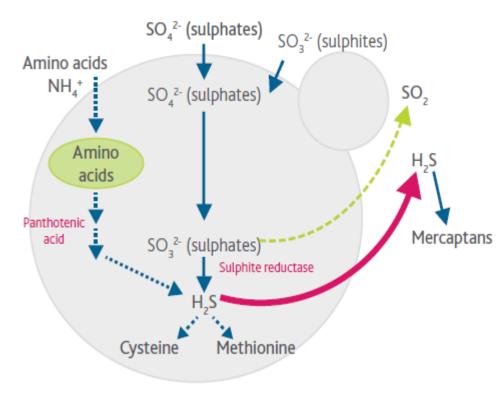


Figure 1: Assimilation of nitrogen and production of biomass during alcoholic fermentation.


Nitrogen Sources:

NH4+ ammonium ion & amino acids (organic)

- Nitrogen initially
 present in must is
 depleted during first 1/3
 of alcoholic
 fermentation.
- Need greater biomass for high potential alcohol
- Adding too much DAP during growth phase can create excessive biomass
- Need the right balance of amino Nitrogen and mineral Nitrogen
- Timing is important

Mid Ferment Nutrition

Key enzyme in H2S production is sulphite reductase

When there is amino acids available, sulphite reductase will produce Sulphur amino acids.

⁵ When there is a shortage of amino acids, sulphite reductase will produce H2S.

Aromatic White & Rosé Winemaking Grape to Cellar

Amino Nitrogen is essential! – Not just DAP

Mid Ferment Nutrition

PRODUCT	DESCRIPTION	DOSAGE	
THIAZOTE®	Diammonium phosphate (DAP) and thiamine. YAN brought by 100 ppm ≈ 21mg/L.	100 - 500 ppm	Aromatic
NUTRISTART®	Complex yeast nutrient, combining organic nitrogen, DAP and thiamine. YAN brought by 100 ppm ≈ 15 mg/L.	200 - 300 ppm	White &
NUTRISTART® ORG	100% organic nitrogen from yeast origin. YAN brought by 100 ppm ≈ 10 mg/L.	200 - 600 ppm	Rosé Winemak
			ing

Grape to Cellar

Fermentation – New Product

Mid Ferment Nutrition

- Complex nutrient with organic and mineral (DAP) nitrogen sources.
- Formulated to develop the organoleptic complexity of white & rose wines.
- Glutathione rich to protect delicate fermentation aromas.

Mid Ferment Nutrition

Detertial Alashal	Total YAN	YAN added 1st addition	YAN added 2nd addition
Potential Alcohol	required* ppm	ppm(YAN1)	ppm(YAN2)
12 % vol	180	150 - initial YAN	30
13 % vol	190	155 - initial YAN	35
14 % vol	200	160 - initial YAN	40
15 % vol	220	170 - initial YAN	50
16 % vol	240	180 - initial YAN	60

*Chart for low Nitrogen demanding yeast strains

- > +10ppm (YAN2) for moderate Nitrogen demanding strains
- > +20ppm (YAN2) for high Nitrogen demanding strains

Mid Ferment Nutrition

Laffort Nutrient Calculator

<u>Goal</u>: produce sufficient yeast biomass, without excess, and preserve a good physiological state of the yeast for the duration of the alcoholic fermentation.

	Total YAN required* mg/L	YAN added 1 st addition mg/L (YAN1)	YAN added 2 ^{sd} addition mg/L (YAN2)
12 % vol	180	150 – Nass initial	30
13 % vol	190	155 – Nass initial	35
14 % vol	200	160 – Nass initial	40
15 % vol	220	170 – Nass initial	50
16% vol	240	180 – Nass initial	60

Aromatic White & Rosé Winemaking Grape to Cellar

<u>* For low N demanding yeasts</u>

 \Rightarrow add 10 mg/L (YAN2) for the average N demanding yeasts \Rightarrow add 20 mg/L (YAN2) for the high N demanding yeast

Maximum recommended doses

Nutristart® AROM \leq 600 mg/L (300 mg/L max at the first add) Nutristart® Org \leq 450 mg/L (300 mg/L max at the first add) Nutristart® \leq 460 mg/L Thiazote® PH \leq 500 mg/L (if not Thiazote, then DAP)

YAN CONTRIBUTION at 100 PPM

Nutristart® adds 15 mg/L Nutristart® Org adds 10 mg/L Nutristart®AROM adds 14 mg/L Thiazote® PH adds 21 mg/L

Online Tools

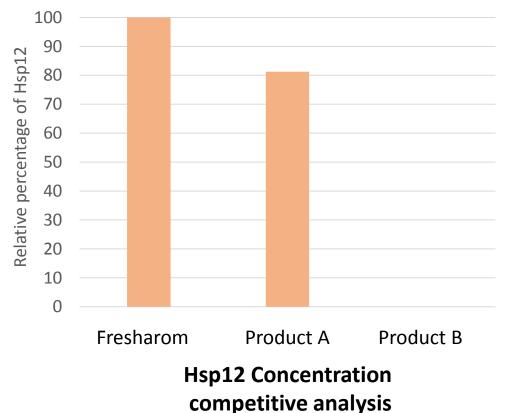
On-line Nutrition Tools

www.Laffort.com

DECISION-MAKING TOOL

Nutrient Calculator – input your juice parameters

Yeast Rehydration video


LAFFORT

Glutathione – Aroma Protection

FRESHAROM®

- Rich in sulfur-containing amino acids (Glutathione precursors)
- Added during fermentation so yeast can assimilate glutathione precursors
- Dosage: 200-300ppm
- Add after last mid-fermentation nutrient addition (16 brix)
- Increases mid-palate and sweetness with Hsp12 cell wall protein

Fermentation - Summary

- Adjust Brix & Acid before fermentation
- Yeast Strain Selection for your juice & style
- Fermentation Temperature favor esters or thiols
- Yeast Rehydration Superstart Blanc for increased aromatics
- Yeast Nutrition prevents H2S (reduction) problems
- Glutathione FreshArom for aroma protection

Post Fermentation Stage

Aromatic White & Rosé Winemaking

Grape to Cellar

ion Stage

Post Fermentation

Crisp & Refreshing Style

- Keep wine protected from Oxygen
 - Topped tanks
 - Gas tanks & transfer lines with CO2
- Keep SO2 levels at 30ppm free during cellaring
- Bottle early (within 6 months)

